Get Algebraische Zahlentheorie (Springer-Lehrbuch Masterclass) PDF

By Jürgen Neukirch

ISBN-10: 3540375473

ISBN-13: 9783540375470

Algebraische Zahlentheorie: eine der traditionsreichsten und aktuellsten Grunddisziplinen der Mathematik. Das vorliegende Buch schildert ausführlich Grundlagen und Höhepunkte. Konkret, smooth und in vielen Teilen neu. Neu: Theorie der Ordnungen. Plus: die geometrische Neubegründung der Theorie der algebraischen Zahlkörper durch die "Riemann-Roch-Theorie" vom "Arakelovschen Standpunkt", die bis hin zum "Grothendieck-Riemann-Roch-Theorem" führt.

Show description

Read Online or Download Algebraische Zahlentheorie (Springer-Lehrbuch Masterclass) PDF

Similar number theory books

Automorphic Representations and L-Functions for the General by Dorian Goldfeld, Joseph Hundley PDF

This graduate-level textbook presents an undemanding exposition of the idea of automorphic representations and L-functions for the overall linear workforce in an adelic atmosphere. Definitions are saved to a minimal and repeated whilst reintroduced in order that the publication is on the market from any access element, and without earlier wisdom of illustration conception.

Download e-book for iPad: Ergodic theory by Karl E. Petersen

The writer offers the basics of the ergodic thought of aspect alterations and several other complicated subject matters of extreme learn. The research of dynamical platforms kinds an enormous and quickly constructing box even if contemplating in simple terms task whose tools derive quite often from degree conception and practical research.

Additional info for Algebraische Zahlentheorie (Springer-Lehrbuch Masterclass)

Sample text

T 4 > of weight < wd(r,r,... , say, where C d depends on d only. Thus n ^ d ^ p ) < n a (p). 12) Let a^ be an integer > ct(3), and set L = Ca3w/2p3. 13) Proposition 1. 3). Then if F t C w but t C^"1. we have N » |D|p~djr. 5), then |D| » p(n/2)+np > pdr+np^ a n d t h e r i g h t h a n d g i d e Q£ ( 7 # 1 4 ) g o e s t o i n f i n i t y P with p. Therefore n w (p) < max (2w, Using an argument employed already in sections 5 and 6, we may infer that nw(p) < \ a o wV 2 . e. 7) of Theorem 2. p) < | a ^ 3 p~2 = 2 5 a 3 a 4 r 6 p"2.

P) < | a ^ 3 p~2 = 2 5 a 3 a 4 r 6 p"2. e. 6). 8. PROOF OF PROPOSITION 1 In view of what we said above, this proposition implies Theorem 2. The proof of the proposition will be done in several stages. In the first stages we will reduce the Proposition, step by step, to certain assertions A d _ 1# A d _ 2 , A 3 ; and in the last stage we will verify A 3 . First stage. F. Say F lies L 1 1 + ... td . 1) with w, = w. Since the zero set of F is invariant under a ~ equivalence (as defined in section 4) we may suppose that F is equal to (not only equivalent to) (^'^j^ Nd = p -f, d I g*a I keF K, a We nave I e^gG^x) + k x«D = G.

34 Bertrand: Galois orbits on abelian varieties REFERENCES. [13 [23 [33 [43 [53 [63 [73 [83 [93 [103 [113 [123 [133 [143 [153 [163 [173 [183 [193 F. S. Paris. 290. 1980, 701-703. P. D. Diss. (chapter III), Nottingham, 1985. S. Lang,Division points of elliptic curves and abelian functions over number fields, Amer. J. Math.. 97, 1975, 124-132. M. Laurent, Minoration de la hauteur de Neron-Tate, Birkhauser Proa, math.. 38, 1983, 137-151. Y. Manin and Y. Zarhin, Heights on families of abelian varieties [Russian3; Mat.

Download PDF sample

Algebraische Zahlentheorie (Springer-Lehrbuch Masterclass) by Jürgen Neukirch

by Kenneth

Rated 4.57 of 5 – based on 42 votes